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ABSTRACT 
 

The available studies for estimating the characteristics of hydraulic jump are only for 

artificial or natural beds, and very limited researches have simultaneously considered 

artificial and natural beds. The aim of this study is to present comprehensive equations and 

models for predicting the characteristics of hydraulic jump in artificial and natural rough 

beds with various dimensions, arrangement and roughness forms. The experimental data of 

different researches on two artificial and natural rough beds (containing 559 data series) 

were collected. After randomization, the data were used in combination of 75-25 for training 

and testing the two intelligent models of K-nearest neighbors (KNN) and M5 model tree 

with various scenarios and their performance were evaluated in estimation of hydraulic jump 

characteristics (including sequent depth, energy loss and shear force coefficient). Then, the 

existing empirical equations examined and calibrated and new optimized equations were 

derived using Solver command in Excel software. The results of the best intelligent models 

were analyzed and compared with the best calibrated and new optimized equations. Both the 

intelligent models had the same performance. In the M5 model tree, the best scenario of all 

the three parameters of sequent depth (R2=0.90), energy loss (R2=0.94), and shear force 

coefficient (R2=0.81) obtained by using Froude number as input parameter. The best 

empirical equations were Abbaspour et al.'s (R2=0.90), Abbaspour and Farsadizadeh's 

(R2=0.90), and Akib et al.’s (R2=0.83) for the sequent depth, the energy loss and the shear 

force coefficient, respectively. The calibrated and new optimized equations had a similar 

precision as the intelligent models, but their errors were less than that of the best empirical 

equations. 
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1. INTRODUCTION 
 

Hydraulic jump is one of the most important hydraulic principles of open channel flow 

which is caused by a change in flow regime from supercritical to subcritical condition. This 

phenomenon is a rapidly varied flow and generally occurs at downstream of the gates and 

spillways. In these structures, a stilling basin is necessary to dissipate the excessive energy 

of the flow through them. In order to avoid the damage to downstream structures, it is 

recommended to limit the hydraulic jump through the stilling basin. In the other hand, to 

reduce the construction cost of the basin, the use of various bed roughnesses should be 

considered [1]. The roughness bed can be in the form of a sinusoidal wave, trapezoidal, 

triangular, and rectangular (as the artificial bed) and gravel particles (as the natural bed). In 

recent years, this phenomenon has been extensively investigated by researchers in different 

condition to achieve the influences of roughness on the hydraulic jump characteristics. Fig.1 

shows the characteristics of hydraulic jump on artificial and natural rough beds. In this 

figure, y1 and y2 are respectively the initial and sequent hydraulic jump, Lj and Lr are 

respectively the jump length and the rolling length, and ks is the height roughness. 

 

 
Natural rough bed           Artificial rough bed 

Figure 1. Characteristics of hydraulic jump on the rough bed 

 

Numerous investigations have been conducted on the effect of roughness on hydraulic 

jump characteristics. Ead and Rajaratnam [2] by using sinusoidal rough beds indicated that 

the jump length on corrugated beds is one half of its length over smooth beds. Carolo et al. 

[3] performed some experiments on hydraulic jump over natural rough bed with different 

diameters of gravels and cobbles. They suggested equations for estimating the relative 

sequent depth and rolling length. Deshpande et al. [4] investigated the effect of spaced and 

staggered semi-circular strip corrugated beds on characteristics of hydraulic jump and 

concluded that, for two beds, the sequent depths were reduced by 29% and 34%, 

respectively, and the jump length were reduced by 21% and 24%, respectively. Ghorbani et 

al. [5] investigated the characteristics of hydraulic jump over a natural rough bed with two 

different diameters. The results indicated that by increasing the diameter from 4.45 to 5.75 

mm, the jump length decreases by 13.5%, but the gravel size has no significant effect on the 

sequent depth. Asadi et al. [6] studied the characteristics of hydraulic jump over natural 

rough bed and obtained the sequent depth, energy loss and sheer force coefficient as 

functions of Froude number. Parsamehr et al. [7] investigated the characteristics of hydraulic 

jump over rough bed with discontinuous elements of lozenge. The results showed that 

maximum reduction of the sequent depth was 29.39% and the increase of the energy 
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dissipation and the bed shear stress coefficient on rough bed were 10.94% and 13.54%, 

respectively, relative to corresponding value on smooth bed. 

In the recent years, application of the intelligent models in predicting the behavior of 

various water engineering phenomena has been increased. The advantages of these models 

are the mathematical expression of physical phenomena and providing a good estimation of 

the unknown parameters in the model by using a small data collection. Nowadays, 

intelligent models namely artificial neural network (ANN), K-nearest neighbors (KNN) and 

decision tree (DT) are considered in simulating water engineering phenomena. M5 model, a 

model tree, is used for predicting the continuous numerical attributes in which linear 

regression functions appear in the leaves of this tree. The results of M5 model tree are easy 

to understand and simulate and its output has a high accuracy that can be compared with 

other models [8]. The K-nearest neighbors (KNN) is a nonparametric method that operates 

using the principle of similarity and proximity of data. In the recent years, several studies 

have been carried out by using different soft computing methods, including M5 model tree 

and K-nearest neighbors (KNN) for investigating hydraulic phenomena [9]. Some of the 

researches conducted about the hydraulic jump by using intelligent models are Negam [10] 

with artificial neural network and multiple linear regression models, Abbaspour et al. [11] 

with ANN and genetic programing (GP) models, Karbasi and Azamatulla [12] with gene 

expression programming (GEP), ANN and support vector regression (SVR), and Roknian 

and Heydari [13] with artificial neural network (ANN).  

In the previous studies, the characteristics of hydraulic jump over artificial and natural 

rough beds with different dimensions, arrangements and shapes have been extensively 

investigated by researchers. In these studies, a number of equations have been provided for 

estimation of hydraulic jump characteristics with some limitations or considerable errors. In 

this study, the performance of intelligent models including the M5 model tree and K-nearest 

neighbors (KNN) for estimating the sequent depth and energy loss and shear force 

coefficient was investigated. For this purpose, available laboratory data of different 

researches on artificial and natural rough beds (named total bed) were used. Also, by 

evaluating the researchers’ empirical equations, some new optimized equations were 

provided using optimization method. Finally, the best soft computing model as well as 

optimized-regression equations was introduced for estimating the hydraulic jump 

characteristics. 

 

 

2. MATERIALS AND METHODS 
 

In this study, the new available experimental data of various researches on the hydraulic 

jumps over artificial and natural rough beds (considered as total bed) were used. Table 1 

shows the experimental hydraulic jump data and the range of parameters. The data used in 

this study were 559 data series including upstream Froude number (Fr), relative sequent 

depth (y2/y1) and relative roughness (ks/y1), shear force coefficient (ε) and relative energy 

loss (ΔE/E1). It is notified that in Carollo et al.’s study [3], the rolling length (Lr) has been 

used instead of jump length (Lj), thus, these two parameters were not investigated in the total 

bed. 
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Table 1: The experimental data of hydraulic jump on artificial and natural rough beds 

Type of rough bed Researchers ks/ y1 Fr y2/y1 ∆E/E1 ε 

Artificial rough 

Ead and Rajaratnam [2] 0.26-0.51 4-10 4.09-10.35 0.47-0.78 7.96-73.19 

Evcimen [14] 0.29-0.93 7.29-15.91 8.7-18.04 0.67-0.85 19.18-170.55 

Simsek [15] 0.26-0.71 2.13-11.92 2.59-14.8 0.10-0.79 0.45-56.8 

Abbaspour et al. [16] 0.25-1.16 4-8 4.13-8.5 0.47-0.72 5.23-39.17 

Elsebaie and Shabayek [17] 0.36,0.72 3-7.5 2.2-6.4 0.40-0.77 5.37-59.47 

Evcimen [18] 0.37-2.2 3.92-13.28 4.16-14.92 0.42-0.85 1.17-158.39 

Natural rough Carollo et al. [3] 0.1-2 1.9-9.9 2.82-9.72 0.08-0.82 0.08-106.50 

 

At first, the data were randomized by using the Kutools of Excel software. Then, by 

using the WEKA software, performance of M5 model tree and the K-nearest neighbor 

algorithm in different scenarios to estimate the hydraulic jumps parameters was evaluated. 

For this purpose, the data combination of 75-25 (75% of data for training and the reminded 

for testing) was used. Also, the performance of existing empirical equations in estimating 

relative sequent depth, energy loss and shear force coefficient was investigated and the best 

equations were introduced. By the same data combination, the previous equations were 

calibrated. Then, by using the Solver command in the Excel software, various forms of 

regression equation were evaluated and some new optimized equations were derived. The 

Solver can be used to minimize the sum of squares of residuals (differences between 

observed and calculated values), and to perform least-squares curve fitting. More details 

about the optimization method of the Solver command is given in Billo [20]. The best model 

or new optimized equations to estimate the hydraulic jump characteristics were selected 

based on the highest R2 and the lowest RMSE (also, based on the minimum number of rules 

in M5 model tree). Finally, by comparing the performance of the best soft computing model 

scenarios with the new optimized equations, the best model or equation for estimation of 

hydraulic jump characteristics was chosen. 

M5 model tree introduced by Quinlan [21] is a subset of machine learning and data 

mining models. Tree-based models are one of data mining techniques in which output is a 

decision tree. The structure of decision tree is like a tree composed of roots, branches, nodes 

and leaves. The decision tree is depicted from top to bottom. The root, as the first node, is 

placed on top and the chain of branches and nodes ends on the leaves. Each node is related 

to a predictor variable, and branches are performed in the node, and the branching intervals 

are chosen so that the sum of the squares of root mean deviations reaches to minimum [16]. 

The process of branching in each node is repeated until reaches to the end node (leaf). 

Finally, a large tree is developed which is pruned and straightened to achieve an optimal and 

efficient tree. 

The KNN is a nonparametric method used for classification and regression. KNN 

algorithm computes a weighted average of the KNNs, which are weighted by the inverse of 

their distance. The algorithm computes a distance between the query example and the 

labeled examples and orders the labeled examples in increasing distance. A case is classified 

by a majority vote of its neighbors, with the case being assigned to the class most common 

among its KNN measured by a function. To calculate the distance between each new sample 

from observational samples, distance functions such Hamming, Euclidian, and Chebisheph 

are used. In this study, the Euclidian function was used. In the KNN algorithm, in order to 
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achieve the best result, determining the optimal value of the K parameter is of great 

importance. For this purpose, the trial and error method is used [22]. In the present study, 

WEKA software, developed at Waikato University in New Zealand, was used for 

performation of M5 model tree and the K-nearest neighbors algorithm (KNN). 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Intelligent models 

The results of M5 model tree and K-nearest neighbors (KNN) for estimating the relative 

sequent depth (y2/y1), relative energy loss (ΔE/E1) and shear force coefficient (ε) in different 

scenarios are presented in Table 2. According to the results, both intelligent models have 

almost the same performance, so that there is no significant difference in the accuracy and 

error of their corresponding scenarios. Negam [10] compared the performance of artificial 

neural network with linear regression and reported that accuracy of artificial neural network 

is better than linear regression. Abbaspour et al. [11] simulated the hydraulic jump on rough 

bed by using artificial neural network (ANN) and genetic programing (GP). The results 

showed that there is a good agreement between observed and predicted values by neural 

network and genetic programming. Karbasi and Azamatulla [12] by evaluating the 

performance of intelligent methods of the gene expression programming (GEP), artificial 

neural network (ANN) and support vector regression (SVR), stated that all the three models 

have an approximately similar accuracy in estimating the characteristics of hydraulic jump 

in rough beds. 

According to the results of different scenarios for each of three parameters, the scenario 

with Froude number (Fr) as input was selected as the practical scenario with a high R2, an 

appropriate RMSE, and with minimum input parameter and number of rules. It can be said 

that the practical scenarios for estimating sequent depth (scenario 2) and energy loss 

(scenario 4) have a more acceptable performance than the scenario with all input parameters 

(Scenario 1). In shear force coefficient parameter, the scenario with the input parameters of 

the Froude number and relative sequent depth (scenario 1) has the best performance. But, in 

this scenario the number of rules is high (9 rules) and in the empirical equations for 

estimating shear force coefficient, only the Froude number has been used. So the scenario 4 

has been chosen as the practical scenario. Almost all researchers, such as Evcimen (14, 19), 

Deshpand et al. [4], Abbaspour and FarsadiZadeh [23], Ead and Rajaratnam [2], Izadjo and 

Shafaee Bajestan [24], Tokyay et al. [25], Asadi et al. [6] and Akib et al. [26] have used only 

the Froude number in empirical equations to estimate the sequent depth, energy loss and 

shear force coefficient.  

In each the three parameters, relative roughness (ks/y1) has the lowest R2, which indicates 

the low effect of this parameter in estimation of hydraulic jump characteristics. In numerous 

studies such as Ead and Rajaratnam [2], Abbaspour et al. [17], Tokyay et al. [25], Parsamehr 

and Hosseinzadeh Dalir [7] and Ghorbani et al. [5], it has been concluded that relative 

roughness has no impressive effect in estimation of hydraulic jump characteristics. In the 

following, based on the decision tree and linear models produced by M5 model tree, the 

results of the practical scenarios of this model are presented for all the three parameters. 

For the sequent depth, the practical model of M5 (scenario 2) has no decision tree and 
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presents only a linear equation. In other words, the equation 1 is sufficiently used for all 

range of the Froude number on rough beds (artificial and natural). Many researchers have 

provided a linear equation with Froude number to estimate the sequent depth, which have 

good agreement with the form of the equation of M5 model tree. 

 

2

1

y
(1.0928 Fr ) 0.1324

y
    (1) 

 
Table 2: The results of M5 model tree and K-nearest neighbors (KNN) in different scenarios for 

estimating y2/y1, ΔE/E1 and ε 

Parameter Number of 

scenarios Input parameters 
KNN M5 

R
2
 RMSE R

2
 RMSE Number of rules 

Relative sequent 

depth 

(y2/y1) 

1 ks/ y1, Fr 0.93 0.70 0.92 0.77 1 

2 Fr (best scenario) 0.89 0.86 0.90 0.83 1 

3 ks / y1 0.23 2.46 0.25 2.30 3 

Relative energy 

loss 

(∆E/E1) 

1 ks/y1, y2/y1, Fr 0.97 0.03 0.99 0.02 1 

2 y2/y1, Fr 0.99 0.01 0.99 0.02 1 

3 ks/y1, Fr 0.95 0.04 0.95 0.03 1 

4 Fr (best scenario) 0.94 0.004 0.94 0.04 1 

5 ks/y1, y2/y1 0.83 0.06 0.82 0.07 1 

6 y2/y1 0.54 0.11 0.60 0.10 1 

7 ks/y1 0.36 0.13 0.41 0.12 5 

Shear force 

coefficient 

(ε) 

1 y2/y1, Fr 0.93 7.39 0.89 10.40 9 

2 ks/y1, y2/y1, Fr 0.87 10.43 0.88 10.67 8 

3 ks/y1, Fr 0.83 11.93 0.83 10.00 2 

4 Fr (best scenario) 0.72 15.90 0.81 12.62 2 

5 ks/y1, y2/y1 0.70 15.97 0.73 15.07 11 

6 y2/y1 0.52 22.01 0.62 17.91 3 

7 ks/y1 0.40 22.49 0.27 24.79 6 

 

For the energy loss, Fig. 2 presents the structure of decision tree for the practical scenario 

(scenario 4). According to this figure, the practical scenario provides 5 linear equations 

(Table 3). The first linear equation belongs to the Froude numbers less than 3.9. The next 

equations are related to the 3.9<Fr<4.9, 4.9<Fr <5.5, 5.5<Fr <7.5 and Fr>7.5. Comparison of 

the highest Froude number (Fr=7.5) with Fr =9 belonged to the strong hydraulic jumps over 

smooth bed shows that classification of hydraulic jumps on rough beds is different from 

smooth bed. However, it seems that more laboratory studies are necessary to better 

understand of this issue. According to the linear equations of the relative energy loss (Table 

3), the coefficient of Froude number (Fr) has decreased from the LM num 1 to the LM num 

5. This indicates that by increasing the Froude number, the energy loss increases 

asymptotically. Most researchers have reported that when Froude numbers increase, the 

energy loss asymptotically increases [19, 26]. 
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In Fig. 3, the decision tree of the practical scenario (scenario 4) of M5 for estimating the 

shear force coefficient is presented. The tree model provides two linear equations for the 

practical scenario (Table 4). As shown in Fig. 3, the Fr=6.6 is turning point. If Fr<6.6, then 

the LM num 1 is used to calculate the shear force coefficient. Also, if Fr>6.6, then the LM 

num 2 is used. According to the linear equations (Table 4), it is seen that the coefficient of 

Fr in equation 2 has doubled with respect to the equation 1, which indicates a significant 

increase in the sheer force for Froude numbers higher than 6.6. 

 
Table 3: Linear equations of the best scenario for ∆E/E1 

Linear model No. Equations 

LM num: 1 ∆E/E1= (0.1416 × Fr) - 0.1326 

LM num: 2 ∆E/E1= (0.053 × Fr) + 0.2645 

LM num: 3 ∆E/E1= (0.03× Fr) + 0.412 

LM num: 4 ∆E/E1 = (0.0289× Fr) + 0.4366 

LM num: 5 ∆E/E1 = (0.0223× Fr) + 0.5465 

 

Fr 5.5 :

Fr 3.9 : LM1(59 / 34.3%)

Fr 3.9 :

Fr 4.9 : LM2(71 / 24.9%)

Fr 4.9 : LM3(53 / 25.0%)

Fr 5.5 :

Fr 7.5 : LM4(141 / 20.0%)

Fr 7.5 : LM5(123 /16.2%)

















 

 

Figure 2. Tree structure of the best scenario for ∆E/E 

 
Table 4: Linear equations of the best scenario for ɛ 
Linear model No. Equations 

LM num 1 ɛ = (6.1690× Fr ) - 19.5965 

LM num 2 ɛ = (11.9904× Fr) - 56.277 

 

Fr 6.6 : LM1(255 / 24.8%)

Fr 6.6 : LM2(161/ 66.1%)




 

Figure 3. Tree structure of the best scenario for ɛ 
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3.2 Empirical and new optimized equations 

In Table 5, the results of available empirical equations as well as calibrated and new 

optimized equations are presented. According to the multiplicity of empirical equations and 

different forms of regression equations, only the results of equations with high R2 and 

minimum RMSE have been presented. In empirical equations for estimation of sequent 

depth, because of the same form of equations (linear form), the value of R2 is equal, and 

difference in performance is related to their errors (RMSE). Accordingly, Abbaspour et al.’s 

equation [17] with R2=0.90 and RMSE=0.83 was chosen as the best empirical equation. In 

optimized equations, equation 2 with R2=0.90 and RMSE=0.81 was selected as the best 

regression equation to estimate the sequent depth. It is noteworthy that in the Blanger’s 

modified equation, the coefficient of Froude number has been obtained 5.55, while in a 

smooth bed it is equal to 8.  

In empirical equations for estimating energy loss, Abbaspour and Farsadizadeh’s 

equation [23] with R2=0.90 and RMSE=0.06 was selected as the best equation. In the 

regression equations, it can be seen that the two equations of 4 and 5 have high accuracy and 

less error than Abbaspour and Farsadizadeh’s equation [23]. In general, equation 5 is chosen 

as the best regression equation for estimating the energy loss. 

In the shear force coefficient, Akib et al.’s equation [26] with R2=0.83 and RMSE=17.49 

was selected as the best empirical equation. According to Table 5, the accuracy of the 

modified and new optimized equations is similar to empirical equations, but their error has 

decreased significantly. According the results, Akib et al.’s modified equation with R2=0.83 

and RMSE=12.24 was chosen as the best regression equation for calculation of the shear 

force coefficient. 

In Fig. 4, the fitting curves of the experimental parameters versus the calculated values of 

the practical scenario of M5 as well as the best empirical, modified and new optimized 

equations are presented. According to Fig.4a (the fitting curve of sequent depth), there is no 

considerable difference between the performance of M5 and Abbaspour et al.’s equation 

[17] and the new optimized equation (No. 2). In fact, accuracy and error of these three 

models are similar to each other. In the energy loss (Fig.4b), the performance of M5 and the 

new optimized equation (No. 5) is equal to each other and better than that of the best 

empirical equation (Abbaspour and Farsadizadeh, [23]). Also, according to Fig.4c (sheer 

force coefficient), the performance of M5 and Akib et al.’s modified equation is similar. The 

proper dispersion of measured and predicted values around y=x line in Fig.4a-c indicates a 

good accuracy and low error of M5, modified and new optimized equations in estimation of 

hydraulic jump characteristics, especially in the sequent depth and energy loss. In general, it 

can be notified that intelligent models, especially M5 model tree by providing simple and 

accurate linear models and a decision tree, can be used to estimate hydraulic jump 

characteristics on artificial and natural beds. These linear equations and decision tree are 

consistent with the physics governing on the phenomenon.  
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Table 5: The results of empirical equations and new optimized equations for calculation relative 

sequent depth, relative energy loss and shear force coefficient. (With M5 model tree) 

RMSE R2 Equations Researchers Parameter 

0.83 0.90 
2

1

(1.1146 )
y

Fr
y

 
 

Abbaspour et al. [17] 

Relative sequent 

depth 

0.84 0.90 2

1

(1.1223 ) 0.0365
y

Fr
y

  
 

Tokyay et al. [25] 

0.87 0.90 
2

1

(1.047 ) 0.5902
y

Fr
y

  
 

Izadjo and Shafaee Bajestan [24] 

0.84 0.90 
22

1

1
1 (5.55 ) 1

2

y
Fr

y
    
 

 
Blanger’s modified equation 

0.82 0.90 
22

1

( 2)
y

Fr
y

   
New Eq. 1 

0.81 0.90 
1/152

1

1 (0.75 )
y

Fr
y

    
New Eq. 2 

0.83 0.90 
2

1

y
(1.0928 Fr ) 0.1324

y
  

 
Best M5 model tree Scenario 

0.06 0.90    2

1

0.01 0.19 0.17
E

Fr Fr
E


     

 
Abbaspour and Farsadizadeh [23] 

Relative energy 

loss 

0.08 0.85    2

1

0.0026 0.08 0.2362
E

Fr Fr
E


     

 
Evcimen [14] 

0.14 0.74 
1

0.09 0.15


 
E

Fr
E

 
Deshpand et al. [4] 

0.06 0.93 

2

1

2
1

E

E Fr

 
   
 

 
New Eq. 3 

0.04 0.93 

2

1

1.28
1

E

E Fr

  
  
 

 
New Eq. 4 

0.04 0.94 

1.14

1

2
1

E

E Fr

  
  
 

 

 

New Eq. 5 

0.04 0.94 According to Table 3 Best M5 model tree Scenario 

17.49 0.83 
2(0.405 ) (0.253 )Fr Fr      Akib et al. [26] 

Shear force 

coefficient 

19.21 0.83  
2

1Fr    Ead and Rajaratnam [2] 

32.03 0.83 
2(1.33 ) (4.66 ) 7.7Fr Fr       Abbaspour and Farsadizadeh [23] 

12.25 0.83 
1.866( 1)Fr    

Ead and Rajaratnam’s modified 

equation 

12.44 0.83 20.587 Fr    New Eq. 6 

12.24 0.83 
2(0.749 ) (1.433 )Fr Fr      Akib et al.’s modified equation 

12.62 0.81 According to Table 4 Best M5 model tree Scenario 
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Figure 4. Measured versus predicted values of relative sequent depth, relative energy loss and 

shear force coefficient 

 

 

4. CONCLUSION 
 

In this study, the performance of existing empirical and new optimized equations as well as 

two intelligent models of M5 model tree and K-nearest neighbors (KNN) was evaluated for 

estimating the hydraulic jump characteristics on artificial and natural beds. The results 

showed that the two intelligent models have almost the same performance. Also, the results 

of the practical scenarios of M5 for estimating sequent depth, energy loss and shear force 

coefficient showed that Froude number is a key parameter in calculation of hydraulic jump 

characteristics and relative roughness parameter has no considerable effect. In the sequent 

depth, energy loss and shear force coefficient, the best empirical equations belonged to 

Abbaspour et al. [17], Abbaspour and Farsadizadeh [23] and Akib et al. [26], respectively. 

The performance of the best modified and new optimized equations was better than the 

empirical equations of the energy loss and shear force coefficient. However, in sequent 

depth, there was no significant difference between the results. Also, the modified and new 

optimized equations had the same performance as M5 model tree. 
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